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Criticality in charge-asymmetric hard-sphere ionic fluids
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Phase separation and criticality are analyzed in z: 1 charge-asymmetric ionic fluids of equisized hard spheres
by generalizing the Debye-Hiickel approach combined with ionic association, cluster solvation by charged
ions, and hard-core interactions, following lines developed by Fisher and Levin for the 1:1 case (i.e., the
restricted primitive model). Explicit analytical calculations for 2:1 and 3:1 systems account for ionic asso-
ciation into dimers, trimers, and tetramers and subsequent multipolar cluster solvation. The reduced critical
temperatures, T: (normalized by z), decrease with charge asymmetry, while the critical densities increase
rapidly with z. The results compare favorably with simulations and represent a distinct improvement over all
current theories such as the mean spherical approximation, symmetric Poisson-Boltzmann theory, etc. For z
# 1, the interphase Galvani (or absolute electrostatic) potential difference, A@(T), between coexisting liquid
and vapor phases is calculated and found to vanish as |T—T7,|# when T— T,—with, since our approximations
are classical, B= % Above T, the compressibility maxima and so-called k-inflection loci (which aid the fast and

accurate determination of the critical parameters) are found to exhibit a strong z dependence.
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I. INTRODUCTION

The location and nature of criticality in ionic fluids have
been subjects of intense interest in recent years [1-3]. At
sufficiently low temperatures fluid electrolytes typically un-
dergo separation into low and high concentration phases
which may be driven primarily by the Coulombic interac-
tions. The universality class of the associated critical points
has been under debate owing to apparently conflicting ex-
periments, inconclusive simulations, and the analytic intrac-
tability of the statistical mechanics beyond a mean field level
[1-3]. Possible scenarios that have been discussed include
classical or van der Waals critical behavior (as might be an-
ticipated in view of the long-range Coulomb forces), cross-
over from classical to Ising-type behavior sufficiently close
to the critical point [3,4], and, as the leading candidate,
three-dimensional Ising-type criticality (as might be ex-
pected for effective short-range interactions arising from De-
bye screening): indeed, recent simulations [5-7] definitively
establish Ising behavior for the simplest charge- and size-
symmetric model, namely, the restricted primitive model (or
RPM); but for z: 1 and size-nonsymmetric systems, the issue
is not yet settled.

The most basic continuum models of ionic fluids are the
so-called two-component primitive models consisting of N
=N, +N_ hard spheres, N, carrying a charge g,=z,q, and N_
a charge g_=-z_q, (with N_/N,=z,/z_=z so that the overall
system is electrically neutral). The background medium is
assigned a uniform dielectric constant, D, that may be used
to represent a nonionic solvent. In the simple cases on which
we focus here, all the spheres have the same diameter, i.e.,
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a,,=a,_=a__=a. The natural and most appropriate reduced
temperature variable is then determined by the contact en-
ergy of a +zq, ion with a —g, counter-ion so that

T" = kgTDa,_lq,]q_| = kyTDalzq;,. (1.1)

Likewise, the normalized density is reasonably taken as

p =Na IV=pad* (1.2)

in which V is the total volume.

This model (with many ionic species) was first analyzed
by Debye and Hiickel (DH) [8] who derived an approximate
expression for the Helmholtz free energy by solving the lin-
earized Poisson-Boltzmann equation for the potential around
each hard-core ion. For the simplest 1:1 (or z=1) case, i.e.,
the restricted primitive model (RPM), the DH theory predicts
[9,10] a critical temperature, T:’DH=1'—6=0.0625, that is in
surprisingly good agreement with modern simulations
[5-7,11-13] that yield T:S0.0S; however, the critical den-
sity predicted by the DH theory, namely, p:’DH=1/64’7T
=0.005, is significantly too low since the simulations indi-
cate p:20.07. Because ionic criticality occurs at such low
temperatures, the association of charges of opposite signs
into “clusters” is an essential feature in the strongly interact-
ing regime, as observed in criticality and phase separation in
other Coulomb systems [14]. Hence, the first crucial im-
provement contributed by Fisher and Levin (FL) [9,10]
was to incorporate Bjerrum ion pairing [15] into the DH
theory: this then depletes the density of the free ions
that drive the transition, as a result of which the predicted
critical density increases by a factor of 9. However, in
order to get an acceptable phase diagram, Fisher and Levin
also found it essential to account for the solvation of the
dipolar ion pairs, or dimers, by the residual ionic fluid. The
resulting “DHBjDI” theory (with “DI” signifying dipole-
ionic-fluid solvation) yields critical parameters, namely,
T, 1 =0.055-0.057, p, 5 =0.026-0.028, which, to date,
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provide the best agreement with the simulations (which in-
dicate T, =0.0493;, p, =0.075 [7]).

The other most commonly used theory, the mean spherical
approximation (MSA) [16-19], yields T:,Ms 4=0.0785 (even
higher than the simple DH theory) and p, \;s,=0.0145 (via
the energy route). Although, like the other approximate theo-
ries, the FL approach makes no reliable statements regarding
the universality class of the criticality—only classical behav-
ior arises [20]—it does provide significant physical insights
into the origin and location of the critical point, specifically
identifying the role of ionic association, of the solvation of
neutral clusters, and of excluded-volume effects.

Two generalizations of the RPM are of profound interest,
namely, the size-asymmetric primitive model and the charge-
asymmetric primitive model. Indeed, it has been argued [2],
that destroying the (artificial) size symmetry of the RPM
might even affect the universality class of the criticality. It
may be suspected that this feature will eventually be ruled
out by precise simulations. Nevertheless, it has been demon-
strated via exactly soluble ionic spherical models [21], that
size asymmetry can produce dramatic changes: explicitly, the
charge correlations become “infected” by the critical density
fluctuations leading to the destruction of normal Debye ex-
ponential screening at criticality. Hence, asymmetry should
be carefully accounted for in any realistic analyses of ionic
criticality.

In the size-asymmetric model the + and — ions have un-
equal diameters: computer simulations [22,23] then indicate
that both T: and pf_ decrease with increasing size asymmetry.
However, this is directly opposite to the trends predicted by
the MSA and some of its extensions [19,24]. On the other
hand, a DH-based theory developed by Zuckerman, Fisher,
and Bekiranov [25] that recognizes the crucial existence of
“border zones” around each ion in which the charge is nec-
essarily unbalanced, does, in fact, predict the correct initial
trends, as does the ionic spherical model [21].

Here we study charge-asymmetric models in which the
diameters of the basic positive and negative ions remain
equal, but the charges are in the ratio z: 1 (z_=1). Although
this model is somewhat artificial for applications to, for ex-
ample, multivalent molten salts such as CaF, or AICl; (since,
in actuality, the cation and anion sizes are rarely equal), it
nonetheless, represents a valuable step in searching for a
physical understanding of real systems [26] which exhibit
both charge and size asymmetry (as well, of course, as other
complexities such as short-range attractions, etc.).

One should remark, first, that with the normalizations
(1.1) and (1.2), the original DH theory [8] predicts that 7'.(z)
and p:(z) are independent of z; furthermore, the same is true
for the MSA [18,19]. However, we attack the problem via an
approach which extends the DH-based methods developed
by Fisher and Levin [9,10] for the RPM as sketched above.
Specifically, we calculate approximate critical parameters
and coexistence curves for 2: 1 and 3:1 systems by explicitly
accounting for the association of the individual ions into
dimeric, trimeric, and tetrameric neutral and charged clus-
ters, and by including the multipolar cluster solvation free
energies induced by the ionic medium. In the calculations
reported here the excluded-volume effects associated with
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FIG. 1. Critical temperatures as a function of charge asymmetry,
z, as predicted by the present DHBjCI theory [see Egs. (6.1), (6.4),
and (6.6)] and its refinements including hard-core (HC) virial terms
with “standard” (triangles; see Table II) and “optimal fit” param-
eters [crosses; see Egs. (6.2), (6.5), and (6.9)], compared with
Monte Carlo simulations [27,28] (open circles) and the original
Debye-Hiickel (DH) theory. The specific parameter values entering
the calculations are discussed in Sec. VI: see Egs. (6.2) and (6.5),
etc.

the hard-core ion-ion repulsion enter in three crucial ways:
first, in the solvation free energies of the individual ions, as
in the original DH theory, and of the neutral and charged
ionic clusters, as in FL; secondly, in the computation of the
cluster association constants which play a pivotal role; fi-
nally, via general hard-core “virial terms” in the free energy
(described within a simple free-volume approximation [10]).

In its primary version our theory may be dubbed a
DHB;jCI approach, with “CI” signifying cluster-ionic-fluid
solvation including the neutral (z+1)-mer and all smaller
charged clusters. When specific hard-core (HC) excluded-
volume virial terms are included, we will label the theory
DHBjCIHC. More detailed specific refinements will also be
examined in order to understand the interplay of various ef-
fects. However, in all versions, our approach unambiguously
predicts that the critical temperatures, TZ(z), decrease with
increasing charge asymmetry, z, while the critical densities,
p.(2), increase markedly. This behavior is exhibited in Figs.
1 and 2 and clearly contrasts with the z independence pre-
dicted by the DH and MSA approximations. Furthermore,
one sees from the figures that our results mirror closely the
trends uncovered by simulations [27,28].

The main physical effect behind these trends appears to be
that increasing the charge asymmetry produces a larger num-
ber of neutral and charged, but relatively inert ion clusters:
the depletion of the density of (charged) ions and their
smaller average mean-square charge leads, first, to a lower
critical temperature, and, thereby, as in the 1:1 case, to a
higher critical density. In Sec. IX we explore this interpreta-
tion further and present a comparison with other current
theories [18,29,30]: these either fail to yield even the correct
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FIG. 2. Critical densities as a function of charge asymmetry z, as
predicted by the DHBjCI theory and its refinements, using the same
conventions as in Fig. 1.

sign of the changes with z or else predict effects that are
much too small!

In order to obtain efficiently, accurate numerical values
for the critical parameters implied by the DHBjCI theories,
we have utilized the so-called k-inflection loci introduced
recently [31,32]. These are defined as the loci on which
x®=x(T,p)/p* is maximal at fixed T above T,, where
X(T,p)=p(dp/dp)s. These loci all intersect at the critical
point but their behavior is also of interest on a larger scale:
See Figs. 9 and 10 below. In our analysis we find that they
are strongly dependent on the details of the model (such as
the hard cores) as well as on the charge asymmetry. Thus for
our preferred parameters, the values of k for which the &
locus has a vertical slope at (T,,p,) are ky(z) =0.93, 0.18,
and —0.87 for z=1, 2, and 3, respectively. It should be pos-
sible to check these predicted trends via simulations.

An interesting new feature that arises in our calculations
(but is absent by symmetry in the RPM) is the appearance of
a nontrivial electrostatic potential difference, A¢(T), be-
tween coexisting liquid and vapor phases when z+# 1. This
electrostatic potential, appropriately deemed a Galvani po-
tential [33,34], has been explicitly anticipated in the case of
1:1 electrolytes with nonsymmetric ion-ion interactions in
an interesting phenomenological treatment by Muratov [35]
(that, however, fails to satisfy the important Stillinger-Lovett
sum rule [36]). It also features in a detailed discussion of
colloidal systems (with z>1) by Warren [37].

However, the dependence of A¢ on z for moderate charge
asymmetry has not been examined previously. On approach
to the critical point we find that A¢(T) vanishes as |[T—T,|?,
where, because our approximations are classical in character,
we obtain B:%. (A similar conclusion is reached for the
asymmetric 1:1 electrolyte in [35].) As a consequence of this
potential difference, a charged double layer [33,34] will exist
at a two-phase, liquid-vapor interface; this, in turn, will be of
significance for interfacial properties such as the surface ten-
sion, which have been studied theoretically, to our knowl-
edge, only for the RPM [38,39].
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The balance of this article is laid out as follows. In the
next section pertinent thermodynamic principles are summa-
rized briefly. Section III then describes the computation of
association constants for the “primary” set of associated clus-
ters consisting of one cation of charge +zq, and m < z anions
of charge —qg; detailed calculations for tetramers are pre-
sented in Appendix A. The crucial multipolar electrostatic
contributions to the Helmholtz free energy are analyzed in
Sec. IV. These and other ingredients are combined in Sec. V
to obtain expressions for the total free energy and, thence, in
Sec. VI quantitative results for the 2:1 and 3:1 models (fol-
lowing a brief account of the pure DH theory). A discussion
of the k-inflection loci is presented in Sec. VII. Section VIII
is devoted to the Galvani potentials while, as mentioned, our
results are reviewed briefly and compared with those of other
current theories in Sec. IX, the varied predictions for the
critical parameters being summarized in Figs. 13 and 14.

In a brief overview of our results [51] we have shown
how, on a semiquantitative basis, the fact that 80-90 % of all
the positive and negative ions are associated into neutral or
relatively low-charged clusters near criticality (see Table IIT
below) serves to account quite well for the trends of 7', and
pj as z increases.

II. SOME BASIC THERMODYNAMICS
A. Phase equilibrium

A z:1 electrolyte may be regarded (neglecting the solvent)
as a single-component system since putting Ny neutral “mol-
ecules” (each of one positive and z negative ions) at tempera-
ture 7 into a domain of volume V completely defines the
thermodynamic state. The total number of ions is then N
=(z+1)N,, while the total ionic number density, p=N/V,
also measures the density of the original molecules. The total
Helmholtz free energy, F(T,V,N) may be introduced, in
standard notation, via the differential relation

dF=-SdT-pdV+ udN, 2.1)

where w is the chemical potential conjugate to the total num-
ber of ions. In the thermodynamic limit, the reduced vari-
ables

Ao =-— and amp =L _(a_f)
T

VkgT kT \ap

(2.2)

are convenient [9,10]. The reduced pressure follows from the
variational expression
P(T. ) = plkgT = max[f(T,p) + fzp]. (2.3)
P

Then phase coexistence (if present) at a given temperature
is specified by the equilibrium conditions

p(T,p,) =p(T,p)

where the subscripts v and [ indicate vapor and liquid phases,
respectively. These equations determine the densities in the
two phases: at the critical temperature and density, p,(7) and
p,(T) coincide.

and  w(T,p,)=wm(T,p), (2.4)
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The single-component or molecular thermodynamic for-
mulation takes care of overall electroneutrality in a natural
way and utilizes only one overall chemical potential. It is
complete, in principle, if one knows the Helmholtz free-

energy density f(T,p). An alternate approach is to treat the
“isolated” or free ions, and the various clusters into which
they associate, each as distinct species in thermal equilibrium

with one other. Since the exact calculation of f(T,p) is in-
tractable, this latter approach is useful in constructing ap-
proximations for the overall free-energy density. Such a for-
mulation,  however, requires the principles of
multicomponent thermodynamics that have have been re-
viewed systematically by FL for the charge-symmetric RPM
in [10] (henceforth abbreviated as I). The formulation
needed for the charge-asymmetric models is quite similar to
that outlined in I but contains some subtle differences. Thus,
even at the cost of some repetition, we outline the main
principles here.

Consider a system of distinct species o, which may be
free ions or ion clusters (o=+,— for the original ions, and
o=2, 3, ... for dimers, trimers, etc.), with number densities
ps=N,/V, where N, is the number of entities of species .

The Helmholtz free energy density f(T;{p,}) can be defined
through a generalization of the single-component formula-
tion above [see Egs. (2.4) and (2.5) in I]. The reduced chemi-
cal potential for species o then follows from

ﬁa(TQ{Pa}) = Mo /kBT= - (af/apa) (25)

Since all the species present will be in chemical equilibrium,
the sum of the chemical potentials of the reactants in any
reaction will equal the sum of the chemical potentials of the
products [see I (2.2) and I (2.3)]. These equations together
with conditions (2.4) and overall electroneutrality, namely,

> GoPo=0, (2.6)

determine the system in equilibrium. For calculating the
pressure one may still use Eq. (2.3), or, equivalently, the
multicomponent form I (2.6).

For a multicomponent system in which none of the spe-
cies has a net charge, thermal equilibrium demands that the
chemical potentials of each species match in coexisting
phases. More generally, however, it is the electrochemical
potential that must be equal in both phases so that for a
species o one has

Iu’(T,U + qo¢v = Iu’(T,] + qo’(bl’ (27)

where ¢,, is the net charge of particles of species o and ¢,(7T)
and ¢,(T) denote the (in general distinct) electrostatic poten-
tials in the coexisting vapor and liquid phases, respectively.
Then A@(T)= ¢,— ¢, is the absolute electrostatic potential
difference between the two phases, i.e., the interphase Gal-
vani potential [33,34]. In the molecular or “overall” formal-
ism presented above, the correct phase behavior can be ob-
tained without any reference to the Galvani potential since
the chemical potential u, conjugate to the overall density p,
corresponds to a neutral species that is insensitive to the
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electrostatic potential ¢. Nevertheless, the Galvani potential
represents a significant feature, that is not present (or van-
ishes identically) in the RPM: it is discussed in further detail
in Sec. VIIL

B. Free-energy contributions

Our aim is to construct a physically appropriate, albeit
approximate free energy for the model systems by adding
contributions that arise from the various degrees of freedom
and the underlying mechanisms and interactions. As a
zeroth-order approximation any fluid may be taken as an
ideal gas. Thus, for each species we invoke an ideal-gas term

J?Id(T;po) =Ps~ Po ln[pzr CO'(T)]’

where C,(T) depends on the internal configurational partition
function of species o, {,(T), and the de Broglie wavelength,
A(T) (see I for details).

The principal contribution to the interaction free energy of
our model electrolyte comes from the electrostatic interac-
tions between the ions. We will use a DH “charging” ap-
proach to calculate the electrostatic free energy of each spe-
cies as discussed in detail in Sec. IV below. The only other
significant interaction between the ions is the hard-core in-
teraction.

The various forms of additive free-energy corrections for
the hard-core contributions that might be employed are dis-
cussed at length in I. However, we have not explored the
range of these options here. It may be noted, first, that such
second-order and higher virial-type corrections [9,10], enter
formally in higher order in powers of the overall density than
do the (leading) electrostatic terms. Secondly, the exact hard-
core diameters already play a quantitatively significant role
in DH theory itself (see Sec. V A below). Furthermore, as
observed in the Introduction, the exact hard cores are equally
vital in the formation of ion clusters, thereby affecting the
values of the corresponding association constants which in
turn play a dominant role. Finally, the formation of tightly
bound clusters (see I and below) at temperatures <T has the
effect, at the rather low densities near criticality, of markedly
increasing the available free volume relative to a fluid with
only hard-core interactions.

For these reasons, in the present study we have confined
our considerations to a simple free-volume approximation
which adds

(2.8)

FHe- (E pr)ln(l -3 Bapa) (2.9)
to the Helmholtz free energy. In the low density limit with all
species regarded as hard spheres of diameters a,, the exact
value of the coefficients B, is 217(1?7/ 3. But, as noted in I,
this choice for equisized hard spheres implies an unrealisti-
cally low maximum density at p"=3/27==0.48 in contrast to
the true, fcc packing density of p, . = V2=1.41. A reason-
able alternative choice for use at intermediate densities is
thus to take effective values of the B, coefficients corre-
sponding to bce close packing [40], namely, B,/a’=4/3\3
=(.770. We will, hereafter, refer to this choice as using “bcc
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FIG. 3. A dimer with the two ions separated by a distance a;.
The dotted sphere indicates the closest possible approach by a
screening ion. The dashed sphere of radius a, represents an effec-
tive exclusion zone for solvation computations: Sec. IV A.

hard cores”; its influence on the values of the critical param-
eters will be examined below in Sec. VI.

We may remark, however, that while some improvements
in accounting for volume exclusion may still be feasible, the
studies in I indicate that straightforward, naive approaches
tend to strongly overestimate the excluded-volume effects.
This seems to occur because the dominant many-particle
ionic correlations in the low-temperature moderately dense
liquid lead to an ‘“expanded-crystal-like” structure that
screens out direct hard-core interactions: see plot (d) in Fig.
6 of I and the related discussion in I Sec. 8.5.

III. ASSOCIATION CONSTANTS FOR ION CLUSTERS

The success of the DHBjDI theory in estimating the criti-
cal point of the RPM, together with “snapshots” of primitive
models of ionic fluids from computer simulations [27,28]
indicate that a high degree of association is present in the
critical neighborhood. A careful analysis of the association
constants for ion clusters is therefore essential. Here, we gen-
eralize Bjerrum’s original approach [15] to define and calcu-
late the association constants for a set of “primary” clusters
which contain one central cation of charge zg, surrounded by
Il =<m=z singly charged anions (a general dimer configura-
tion is illustrated in Fig. 3). These primary clusters with,
including the bare ions, net charges ¢,=(-1,0,+1,...,
+2)qo, will be the first to form when the temperature is low-
ered, and the density increased.

Of course other, larger clusters of ions must eventually
come into play. However, insofar as their net charges fall in
the same range, they may be subsumed, in a first approxima-
tion, under the like-charged ions and primary clusters: see
the discussion in I Secs. 8.3 and 8.4. The most important
exception is probably the doubly overcharged “molecular”
clusters with m=z+2 counterions: however, we believe that
such clusters will not contribute significantly in the critical
region for z<4.
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FIG. 4. A configuration of a tetramer with coordinates suitable
for calculating the association constant. The small dotted spheres
indicate the ground-state orientations of the satellite ions. The cen-
tral positive ion is located at the origin.

To proceed, consider a charge ¢,=zq, fixed at the origin
of a Cartesian coordinate system with m satellite charges
q_=—q, around it. For m=3 one has a tetramer for which
Fig. 4 illustrates a general configuration, and let r; be the
position vector of the ith satellite. The reduced configura-
tional energy (electrostatic plus hard core) for such a system,
normalized by ¢,q_/Da, is

E, ({r}) = E 2. E i, if rj, r;=a,

=t Ui (i) 2Tij
=—oo,  otherwise, (3.1)
where r;=[r, r;=|r;—r/, and (i,j) indicates a sum over all

distinct pairs. The association constant for a cluster or (m
+1)-mer formed by these charges is the internal partition
function

R

K10 =TT | dr,explB, (i), (2)
si=1

a

where R is a suitable cutoff radius without which all the
integrals would diverge at large distances.

The choice of R is necessarily somewhat arbitrary since
there is no clear, absolute criterion for when a group of ions
is to be considered “associated.” The ambiguity in choosing
a cutoff radius arises even for the simplest possible cluster, a
dimer (m=1). In that case Bjerrum [15] observed that the
integrand in (3.2) exhibits a minimum at a radius R
=a/2T"; thus he chose R=R" as the cutoff for f<% (since
for Tkzé one has RBi<g). Evidently, the choice R=R"
makes the association constant least sensitive to the value of
the cutoff. Bjerrum’s choice, however, may reasonably be
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considered as unphysical since R®(T) becomes unbounded
when T falls to zero while one expects a (+,—) ion pair to
become more tightly bound at lower temperatures. This issue
is discussed in I (see Sec. VI B) where Bjerrum’s association
constant is also compared with other definitions: see also
[25,41]. While Bjerrum’s cutoff, R®J, has no direct relevance
to the actual physical size of a dimer which is much more
compact (as analyzed in I, Sec. VI B), the value and behav-
ior of Bjerrum’s association constant is numerically accurate
for T" < 1—16 despite the unphysical nature of the cutoff.

In light of this analysis we generalize Bjerrum’s approach
and choose the cutoff R so that (JK,, ./dR) is minimal. For
dimers, the choice of the cutoff makes very little difference
over a wide range of R at and below T*—]l—6 However, one
may anticipate that the dependence of K, .(T;R) for m
>1 will be more sensitive to the choice of R because the
ground-state binding energy per (g,,g_) bond (for a neutral
cluster) becomes smaller with increasing z [42]. As a conse-
quence we must expect our estimates for the critical densities
to become less reliable with increasing charge asymmetry.

It should also be noted that our choice of integration do-
main (3.2) is somewhat arbitrary. Thus by taking the outer
boundary surface to be r;=R (for all i) we have chosen to
integrate over an m-dimensional hypercube. Instead, one
might well choose the m-dimensional hypersphere, X; r
<R>+(m—1)?a* (where j runs from 1 to m), or, say, a hy-
percube cut along its body diagonal, X;;<R+(m-1)a.
However, it is reassuring that for m=2, where exact numeri-
cal calculations are possible, the choice of integration do-
main makes a difference of less than 0.5% in K, , at TZDH
=0.0625; furthermore, the sensitivity to this choice is re-
duced at lower temperatures.

Now, for small 7, the integral defining K, . is dominated
by the ground-state energy of the cluster, and, it is appropri-
ate, therefore, to expand the integrand about the ground state
configuration. After appropriate scaling of the radial vari-
ables, we obtain, for m=3, the general form

1 87Tm+1/2j a3m Zm—3/2T*2m—3/2
m .
— 2m-3 m
m! h (Cp.)
H )\m,k
k=1

Xexp(mC,, . IT")

K, (T;R) =

Im’z(f;R), (3.3)

where the residual integral satisfies

Z,(T";R) =1+ 0(T"), (3.4)
while the N\, ;’s are the eigenvalues of the reduced quadratic
form describing the angular variation of the energy. The
dominant exponential dependence is controlled by C,, ., the
binding energy per satellite in units of (¢,g_/Da), while 7,
is the Jacobian of the transformation leading to the diagonal-
ization of the angular integrals. In Appendix A the calcula-
tions are performed explicitly for tetramers (m=3: see Fig. 4)
thereby illustrating the general procedure. Evidently the prin-
cipal T dependence of the association constant can be found
by scaling the variables and expanding the integrand for
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small 7", A full calculation, however, requires an evaluation
of the residual integral factor Z,, .(T";R).

Dimers and trimers turn out to be special cases for which
the general form (3.3) does not apply. Nevertheless, the cal-
culations follow similar lines. For dimers the association
constant has been discussed in detail in I. Expanding around
the ground state yields

K, (T;R) =4ma’T exp[UT'1Z, (T";R).  (3.5)
Moreover, using the Bjerrum cutoff R® and evaluating ana-
lytically the integral over r in (3.2) gives [10]

T, (T":R¥) = #e‘l’T*[Ei(I/T*) ~Ei(2) +¢?]

—(1+T +277), (3.6)

6f3

where Ei(y) is the standard exponential integral. Because of
the normalization (1.1), this result is independent of z. The
asymptotic expansion for small 7" is, in addition, indepen-
dent of R and given by
T, (T ;R)=1+4T +4X5T? +4X5X6T7 + (3.7)
We note that when 7" <0.1, this expansion gives reasonably
accurate results if truncated at the smallest term: see I.

For trimers, a similar but more elaborate calculation
yields,

3.6

K, .(T";R) = 327 sexp[2(1 = 1/42)/T"1 7, (T";R).

( 1/47)
(3.8)

However, in contrast to dimers, an exact analytical result for
IZ’Z(T*;R) seems inaccessible for any value of z. Neverthe-
less, one can obtain precise results by numerical integration.
For our subsequent calculations we need results for trimers
with z=2 and 3, i.e., the integrals Z, ,, and Z, ;. Generalizing
the Bjerrum procedure, we determine the appropriate, opti-
mal cutoffs, R,, . by searching numerically for the minima of
(K, ./ dR) at fixed temperature. The results can be scaled

conveniently by setting R, ./ a—RZYZ(TL)/ T", where, typically,
we find

R,,(0.05) = 0.263, R,5(0.05)=0336.  (3.9)
For z=2, the sensitivity of the trimer association constant to
the cutoff is markedly greater than found for dimers (which
was illustrated graphically in I Fig. 3). At a temperature T
=0.052 [some 6% above the predicted value of Tc(z 2): see
Sec. VI] increasing (decreasing) R,, by 20% increases (de-
creases) K,, by about 0.7%. However, as is explained in
Sec. VI, these changes do not significantly alter the predicted
critical parameters. Because of the larger central charge, the
sensitivity of /5 to the cutoff is significantly smaller at the

relevant temperatures.
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Even if one employs a precise numerical calculation of
K, . for trimers, it is worth noting that it can be reproduced
quite accurately by Padé approximants [43] that embody the
small-T" expansion of Z, ,. For example, when z=2, the ex-
pansion

76 . 357248 222368 768 .,
Iz 2(7-'*,R) =1-—T + ’T*z— 7-'*3
’ 49 2401 117 649
7109382 144
[t o STV (3.10)
117 649

yields a [1/3] Padé approximant that up to 7"=0.055, agrees
with the results of numerical integration to better than 4%.
With this in mind, we consider the approach also for tetram-
ers.

Indeed, for tetramers (needed only for the case z=3), ex-
panding about the ground state yields

A 48 32,9790
K;(T":R) = _21/231/4W7/2L”
’ 5 (1-1/43z)°

xexp[(3 = \3/2)IT" 1T, (T":R); (3.11)

see Appendix A. However, the calculation of 75 , proves dif-
ficult even numerically. Asymptotic expansion for small 7"
yields I3,3=Ig7,;+(’)(7*8) with (after some efforts)

TVNT 5R) = 1 +4.263 24T + 157.697T2 + 353.4077"
+29636.117T* - 58 642.1T°7

+8.5259x 109770 = 7.078 15x 10777
(3.12)

One can then form and examine all the approximants up to
order 7. One observes readily that the [5/2] approximant
seems the most reliable judging its convergence relative to
the other approximants: see Fig. 5.

However, since the tetramer is of prime importance for
criticality in the 3:1 model, and because one knows that an
approximant based only on the low-T asymptotics must fail
at some value of 7" (of likely magnitude ~0.1), we have
undertaken a Monte Carlo evaluation of Z; 5 [44]: see Fig. 5.
The details are described in Appendix B. It transpires that the
[5/2] Padé approximant agrees to within 4% with the precise
numerical calculation up to T"°=0.06 [which is 15% higher
than the DHBjCI value of T:(z=3) as can be seen in Fig. 1].
Nevertheless, for our explicit calculations we fitted the
Monte Carlo calculations of 7 5 to the form

18
Ty 5(T5R) = ZYMNT"R) + 2 i T, (3.13)
j=8

where the coefficients i; are listed in Table I. As seen in Fig.
5, the fit is very good and, indeed, provides an accuracy of
one part in 10? or better. In reality, it probably remains valid
some way above T"=0.10; but it is also clear that the [5/2]
approximant fails rapidly above 7"=0.06 and shows notice-
able deviations already for 7" =0.04.
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FIG. 5. Calculation of the association constant integral I3!3(T“).
The dashed line represents the [5/2] Padé approximant while the
dotted lines portray the [6/1] and [2/5] approximants. The solid
circles result from Monte Carlo integration while the solid line is a
polynomial fit: see Eq. (3.13).

IV. ELECTROSTATIC CONTRIBUTIONS TO THE FREE
ENERGY

A. General considerations

To calculate the electrostatic part of the free energy we
adopt the basic DH strategy [8] but, as in [9], we generalize
the approach to include cluster species that contain more
than one ion and, thus, are not spherically symmetric. Con-
sider a cluster (possibly just a single ion) of species o that
has charges {¢,} at positions {r;}. Owing to the hard-core
repulsions the “free” screening ions are prevented from en-
tering the “exclusion zone” of the species: see, for example,
the dimer with one +2¢, and one —¢g, ion which has a dumb-
bell shaped exclusion zone as seen in Fig. 3.

To estimate the free energy of an isolated cluster in an
atmosphere of screening ions, of densities p, and charges ¢,,
we approximate its exclusion zone by a sphere of radius a,,
[9,10]: for the selection of an appropriate value for a,, see
below in Sec. V C. At this point we will suppose only that
the choice of origin for this effective exclusion sphere is such
that all the charges of the cluster are included within it. A
specific criterion for the precise choice of origin for the ef-
fective exclusion sphere (when not dictated by an obvious
symmetry) will be developed for each cluster species as we
address them individually.

TABLE 1. Fitted expansion coefficients i; for calculating the
tetramer association constant K3!3(T:<); see (3.11)—(3.13).

j 10-U+9;; j 10-0+9;; jo1071%;
8 -0.419627 12 55247 16 13.8829
9 2.17887 13 -44.2769 17 2.58295
10 2.6276 14 124183 18 0.40201
11 -28.3178 15 0.558599
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For r=a,, the overall electrostatic potential may gener-
ally be expanded in terms of the spherical harmonics Y, as

(r.6.0) = 41
< nhe Dlm 20+
l
E qlY[ m(al’ th) I+1 +Alm Yl,m(07 (P)7
i,>
4.1)

where D is the dielectric constant of the medium, i labels the
particles of the cluster o, the g; are their charges, and the
(r;,6;,¢;) their coordinates, while 7, -=min(r,r;), r;~
=max(r,r;), and the notation 3, ,, means £ ! . We note
that the boundary condition at the origin is already taken into
account in this expression.

For r=a, the potential arising from the cluster ions in o
is screened by the external ions and hence we may expand
the potential as

LS B kY00, (42)

I,m

(D>(r5 07 (P) =

in which screening is embodied in the boundary condition
®. —0 when r— o [which relates rather directly to the in-
troduction of the electrostatic potential ¢ in (2.7)]. The in-
verse Debye length introduced here is defined generally by

K(T{p}) = (4772 pr /DkBT)” =g, (43)

and, when convenient, we will write

ka=x and ka,=x,. (4.4)
The spherical Bessel functions
ki(x) = g (x)eIx!, (4.5)

that arise in the solution of the Debye-Hiickel or linearized
Poisson-Boltzmann equation, are conveniently specified in
terms of the polynomials

I

E Mxl—m’ (46)

0= 2 = m),
[so that go(x)=1, g,(x)=1+x, g,(x)=3+3x+x>, etc.].

On the surface of the exclusion sphere, r=a,, matching
®_ and VO_ to - and VP, (the usual conditions express-
ing continuity of the potential and absence of surface charge)
yields the coefficients

Qi { (21 + 1)k (x,) ]
Ay =——m] - : 4.7
b a¢27-1+1 X K1 (x) “.7)
4
. Qi (4.8)

I+1
a; Xo kl+1(x0')’

in which the cluster multipole moments, Q,,,, which will
play a central role in our calculations, are given by
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* !

m= 2 Yl,m(ai’ (Pi)qiri’ (49)
i

where the summation runs over the particles of the cluster o.

In (4.1), the potential arising directly from the ions in the

cluster (without any contribution from the screening ions) is

l
Zm(H @)E QzYl m(ez’ @) rl+1 s

i,>

Wir0.0)= 53

(4.10)

and therefore, the potential inside the exclusion sphere aris-
ing from the external screening ions is merely

(r;{r,q}h) = 2 (4.11)

Al ml Yl m(0 (P)

where r=(r,0,¢) and the A,,, are given by (4.7). The elec-
trostatic contribution of the species o to the total free energy
now follows via the Debye charging process [8,9] as

1
FS'I(T’{po’}s V) = %j E qi d\ §<(ri;{r")\qj})’ (412)
0 i

and normalizing by VkpT, we finally obtain

o4
IBPG'E va(xzh).l 2 |le

El El
TApy}) = — F VT
( {p }) ? 1=0 (21+ 1 Ay m=-1

>

(4.13)

where the crucial expressions are

NE 21+ 1)kl()\x)]
o= [1 T k)

_20+1 g1 (x) x?
T2 {ln{gm(m]_“z(zl 1)}’ “.14)

while the “multipole-squared amplitudes,” Em|QZm , are in-
dependent of the axes defining the polar coordinates.

B. Monomers

Consider a monomer (or single + or — ion) with diameter
a,=a and charge ¢,. The multipole exrpinsion (4.9) contains
only the /=0 term with Qg,=qg./\4m. Substituting into
(4.13) gives the reduced free energy of a monomer in a cloud
of screening ions

FRTdp,)) = (4.15)

—*P+Uo(Ka)
qlq-

If only monomers are present, summing the contributions
from the positive and negative ions leads to the familiar DH
free energy [8,9], namely,
FPUTp,d) = [In(1 + ka) — ka + 3(ka)*|/4md’.
(4.16)

This result, which depends only on x=«a is, in fact, gener-
ally valid for any number of charged species, provided all of
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them have the same size and the system is overall electrically
neutral: as well known, it reproduces the exactly known an-
swers at the leading low-density order.

C. Dimers

For our z:1 system, consider the dimer illustrated in Fig.
3 with a cation of charge ¢, =zq,, separated from an anion of
charge ¢g_=—q, by a distance a,. (In reality, a; =a will be a
fluctuating distance; but, as discussed in detail in I, we may,
in reasonable approximation, regard it as a definite function
of T: see also in Sec. V C below.) Let a, be the radius of the
effective exclusion sphere (which, clearly, should increase
when «a; increases). Since the dimer is asymmetric unless z
=1 we displace the center of the exclusion sphere towards
the positive cation, by a distance pa;: see Fig. 3. One should
expect the optimal value of p to depend on z: by symmetry,
one must surely choose p=% for z=1, but when z— % one
should, likewise, have p— 0. For the moment it suffices to
assume O<p=1: a concrete criterion for choosing p will
emerge below.

In the configuration of Fig. 3, the leading multipole mo-
ments are

20+ 1
0=\ G aallep'+ (D1 -p)], @17)

and Q;,,=0 if m # 0. Substituting the above into (4.13) yields
the dimer contribution

“ 21
FETstp,) = L2 Sl + (- 111 = p) Poan).
=0 2

(4.18)

The value of this sum and its rate of convergence clearly
depend on the value of p. Explicit numerical tests using
a,/la=1, a,/a=3[1+In(3)/2]/4 (the “angular average”
value discussed in Sec. V C) show that the series converges
sufficiently rapidly that, to the precision of interest, one need
not consider terms beyond /=2 (see also I). Indeed, for z
=2 and 3 and 1 =x,=<35, the /=3 remainder for p=% varies
only from 0.8% to 1.6% of the /=2 or dipolar term and can
thus be safely neglected within the accuracy of this calcula-
tion. Evidently, a reasonable criterion for the optimal value
of p would be that which minimizes the full sum of terms
from /=2 to <. In view of the rapid convergence, however, a
very satisfactory option is to choose the value of p that mini-
mizes the /=2 or quadrupolar term: this yields the simple
result
—

p=1/(1+\z). (4.19)
This value, in fact, eliminates the quadrupolar term entirely
and satisfies the two limiting cases, z=1 and z— o, dis-
cussed above. Adopting this expression for p and neglecting
the terms with /=3 in (4.18), we obtain the very satisfactory
approximation
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20

FIG. 6. A trimer bent at an angle 2. The dotted sphere indicates
the closest approach by a screening ion. The exclusion zone is ap-
proximated by a sphere, shown dashed, of radius as.

2
—f (z-1)? a 1 aa

Ti{po}) = ~——po—0o(x2) + 7223 a2(x2),

2 ( {P ) T Pzazvo(xz) T«Pz ag v,(x,)

(4.20)

which we will employ below. It is interesting to note that the
choice (4.19) also makes the coefficient of the /=1 (or dipo-
lar) term independent of z. Furthermore, numerical calcula-
tions show that for this choice of p, the /=3 remainder di-
vided by the /=1 term is reduced by a factor of about 1/z
relative to the symmetrical assignment p:%.

D. Trimers

In considering the solvation of a trimer species, the first
point to note is that although the ground state is linear (in the
form: —qg, +zq0,—qo) and so has a vanishing dipole moment,
the typical fluctuating configuration at finite temperatures
must be bent and hence have a dipole moment of magnitude
of order gga. Indeed, examination of snapshots of simula-
tions for z=2 in the critical vicinity (see, e.g., [28]) fully
confirms this conclusion. Accordingly, consider, as illustrated
in Fig. 6, a trimer which is (say, “instantaneously”) bent at an
angle 2a. To simplify the analysis, we will suppose that it is
adequate to fix the radial distances r; and r, for both satellite
anions at the spacing a;. (As discussed in I, and also below,
we expect the fluctuations in a; to be relatively small.)

For the effective exclusion sphere, now of radius, say, as
(see Fig. 6), the issue of the placement of its center again
arises. By symmetry (having imposed r;=r,=a;) the center
should lie on the bisector of the angle 2a which, in Fig. 6,
has been identified as the z axis. Then, in analogy to the
dimer, we center the exclusion sphere at a distance pa; cos «
displaced from the center of the central cation (or charge g.,)
towards the two anions of charge g_ whose axial location lies
at a distance a, cos a as projected onto the bisecting axis.
With this placement of the center, we find the multipole-
squared amplitudes

10002 = (1/4m)(z - 2)23, (4.21)
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21017 = Blamzp +2(1 = p)P(cos a)’qial,  (4.22)

> Qs 2 = (5/4m){3 sin*a

+ (sina + [zp? = 2(1 = p)*Jcos’ @) }qha].
(4.23)

In an ideal calculation of the solvation free energy of
trimers, every trimer bent at a specific angle would be treated
as a separate species in its own right. However, to make our
calculations tractable we substitute these expressions for the
multipole-squared moments into the basic result (4.13) and
replace the factors that depend on « by thermal averages to
obtain

FNTpoh)

_ Pl sl
—ZT* (z-2) a3Uo(x3)

2
aa
+[zp +2(1 —p)]z(cosza)—3102(x3) + (3 sin*a
as

4
aa
+{[zp* - 2(1 = p)*]cos’a + sinza}z)a—slv4(x3) e } )
3

(4.24)

Again, an ideal calculation would recognize that the in-
creased solvation free energies resulting from larger dipole
moments, should enhance the thermal weight of more highly
bent trimers. However, we will forgo such a refinement
(which would require a cumbersome self-consistent formula-
tion) and merely weight the bent trimer configurations via
the Boltzmann factors computed with the “bare” cluster en-
ergies. Accordingly, we consider the thermal average (O) of
an angular function O at temperature T to be defined by

/2 .
f da sin 2a O(a)eP 9T
/6

<O> = /2 ’

J da sin 2a eF@O'T
/6

(4.25)

where E(a)=-a/2za, sin « is the reduced repulsion energy
between the two satellite anions. Note that in setting the
lower limits of integration at a=/6 (due to hard-core re-
pulsions), we have neglected a domain of closest approach,
and, hence, highest repulsive energy, that is accessible when
a;>a. In fact, in the following calculations, we will need
only the two averages (sin’a) and (sin*@) which follow from
the expressions

1 50,,3(1/2T) = 5,,3(1/22T7)

:2n —
i) = (e —saj2ery o (20
where
e S
S"(x)_(n—l)! Ei(-x) + x E,O(— 1) F (4.27)
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As regards the choice of p, a first guess is to choose the
value p,,;, which minimizes the quadrupolar term. However,
this leads to unphysical features such as p,;;,<<0 and even to
Pmin——% when T°—0 (when, in fact, trimers become
straighter and straighter). The alternative adopted here is to
accept the value of p in the interval 0<p =1 that minimizes
the quadrupolar term. One may verify that this value is p
=0 for 0.003<7T" <0.06, yielding a quadrupolar term that
agrees with the exact minimum to within 3%.

In summary, although, as indicated, various refinements
of our approach may readily be contemplated, we believe
that the formulation reasonably captures the essential physics
underlying the solvation of fluctuating trimeric ion clusters.

E. Tetramers

For z=3, one must allow for the formation of tetramers
and include their solvation free energy. A tetramer in its
ground state is planar with ¢=0, satellite radii r,=|r;|=a, (i
=1, 2, 3) and angular separations, 6,,=0,3=27/3 (see Fig.
4). As for the trimers, thermal fluctuations about the ground-
state configuration give rise to significant dipole moments
that are absent at 7=0. To tackle this issue we estimate the
solvation free energy of a tetramer by considering the har-
monic normal modes of angular oscillation about the
ground-state configuration. (Note that these modes already
enter into the calculation of the corresponding association
constant: see Appendix A.) For each mode, a thermal aver-
age of the contributions of the individual multipole moments
is computed; the sum of these mean-square terms then pro-
vides a value for the overall multipole free energy. Of course,
this approximation neglects the nonlinear interactions be-
tween the modes but, because of the relatively low value of
the critical temperature, this should not be numerically sig-
nificant.

Following our treatment of trimers, we will fix the three
satellite radii at a;; the exclusion zone for the tetramer will
be approximated by a sphere of fixed radius a, which we
choose to center on the positive core ion (of charge +zqj).
Ideally, the origin of the effective exclusion sphere should
again be placed so that, say, the total contribution of the
quadrupolar free-energy term is minimized. For the present
calculations, however, only the case z=3 will be utilized:
then the tetramers are neutral so that both monopole and
dipole moments are independent of the origin about which
they are defined. The variations of the quadrupole moments
due to small displacements of the origin and, likewise, varia-
tions in the exclusion diameter a, that might reasonably be
associated with thermally induced shape changes, may be
neglected at the level of precision appropriate in light of the
other approximations of the theory. (Note that changes in the
definition of a4 are studied quantitatively in Sec. VI, below.)

A planar tetramer has three angular normal modes: two
“in-plane” modes and one “out-of-plane” mode. The first two
modes correspond to ¢=0 in Fig. 4 [and ¢"=0 in (A4) of
Appendix A] since the three satellite ions remain in the (x,y)
plane and ion 1 may be considered as fixed on the x axis (at
x;=r;=a,). The first mode (a) is a “flapping” mode in which
the ions 2 and 3 (see Fig. 4) oscillate in phase, towards and
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away from the axis formed by ion 1 and the central, positive
ion; in other words one has 6;,= 6,5 [following from ¥=0 in
(A4)]. The second mode (D) is a “pendulum mode” in which
the angle between the ions 2 and 3 remains fixed, equal to its
equilibrium value so that 6,,+ 0,3=4/3 [corresponding to
X=0 in (A4)]. Lastly, in the “out-of-plane” mode (c), two
satellites are fixed whereas the third one swings around the
plane of equilibrium (corresponding to the mode where X
=Y=0 while ¢ is varying).

For each mode we need a configuration-space weighting
factor: these all derive from the expression (3.2) for the as-
sociation constant. For the tetramer, using the coordinates in
Fig. 4, this is

drldl‘zdl‘3 = 87Tzr%drldr2dr3(r§ sin 012 delz)

X(r3 sin 6,3 d6)3)de, (4.28)
where a prefactor 477r% comes from the full angular integral
over the orientation of the x axis, while a factor 27 arises
from the axial integral [rotating the y axis about the x axis so
that satellite 2 is in the (x,y) plane]. Insofar as we consider
the angular modes at fixed r;=a,, the only relevant factor for
the angular averages over the mode coordinates is
sin 6, sinf3 d6,,d0,3de. [Note that essentially identical
considerations enter in writing (4.25) where 6,,=2a.]

Now the monopole moment of the (general) tetramer is
always Qg o=(z—3)qo/ V41r; but the higher moments clearly
depend on the mode configurations as we proceed to specify.

(a) In-plane flapping mode. Let 6,,=6,3=0 be the angle
describing this normal mode (but recall that §=27/3 speci-
fies the ground state). The dipole and quadrupole amplitudes
generated by excitation of the mode are then

[1+2 cos 6qa’, (4.29)

3
2_
% |Ql,m| _477_

E |05,* = —[sm 6+ 3 cos*lggal. (4.30)

The reduced repulsive Coulombic energy between the three
satellite ions is given by

! ! :| (4.31)
sm(0/2) 2sinf | '

a
-
Thus the thermal average square moments may be calculated
from

'For symmetry reasons, one might prefer to consider, in place of
the eigenmode (c), the more symmetric mode (¢’) in which the
three satellites swing together in and out of the equilibrium plane
while maintaining an equilateral triangle geometry. For small devia-
tions around the ground state, these two modes coincide; further-
more the differences induced in the resulting critical temperatures
and densities (via the nonlinearities) are less then 0.3%.
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576

(07l N(f)f dosin*0|Q;,,(O)e ", (4.32)

where 1/N,(T") is the obvious normalizing integral. The
limits specified on € correspond to the hard-core restrictions
in the case a;=a and should be relaxed appropriately if a,
>a (although, since they correspond to the maximal inter-
ionic repulsions, the differences will be small).

(b) In-plane pendulum mode. Now let us put 6,
=(m/3)-0" and 0;;=(2m/3)+6', so that ' describes the
angular amplitude of the mode. The dipole and quadrupole
amplitudes are then

E |Q1 m| = _[1 —cos ' JQOal’ (4.33)

E|Q2m|2——[5 2 cos(260')|geat. (4.34)

The thermal average is now computed via the normalized
integration

/3
(Ol =Ny(T") do'[1+2cos(26)]
—/3
X |Qy (02BN (4.35)
where the reduced energy can be written as
s
I 2V3 0'/2
Ef0)=-——| =+ L() . (4.36)
N 3 1+2cos 6

(¢) Out-of-plane mode. Finally, in the out-of-plane mode
as described previously (in which 6,,=60,3=27/3 and ¢ var-
ies), the dipolar and quadrupolar amplitudes are

9
2101, = 211 - cos ¢lqgai, (4.37)
4 27,2 4
2 102* = —[3-2c0s p+3 cos’elagal,  (4.38)
while the reduced repulsive energy is simply
E.(¢) a4 {2 ! ] (4.39)
(¢)=- + . .
=T Bzay L cos(el2)

For this mode, the thermal average is performed according to

Pm
<|Ql,m|2>c = J\/’C(T*)f dQD|Ql,m(QD)|ZeEC((P) ’ (440)
0

where the condition ¢=<¢,,=m7-2 arcsin(l/\@) expresses
the hard-core condition and 1/N,(T") is the corresponding
normalizing integral.

At this point, the overall solvation free energy of a tet-
ramer, ffl(T;{pg}), may be calculated by summing the sol-
vation free energies computed for each mode. This completes
the basic general analysis.
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V. CRITICALITY AND COEXISTENCE UNDER CHARGE
ASYMMETRY

A. Pure Debye-Hiickel theory

The original Debye-Hiickel theory [8] amounts to writing
the overall free-energy density as

f(T.pyp) = FPUT,pypl) + T p,) + T o),
(5.1)

where p, and p_ are the densities of cations (with charge
q+=12q0) and anions (with charge q_=-gq), respectively, and
fPH was obtained in (4.16). From the electroneutrality con-
dition (2.6) one has

pr=pl(1+2), p_=2zp/(1+2), (5.2)

while using the expression (4.3) for Debye length, with x

= ka, the normalized density (1.2) becomes
p =x*T 4. (5.3)

The contribution to the overall chemical potential from the
DH free energy is then

aPH = —x/2T°(1 + x). (5.4)

Taking C,=C_=A3 in (2.8) where A(7) is the de Broglie
wavelength for free ions, the ideal-gas contribution is merely

N 1 1
2= 1In(x*T") + ln( )+ < ln( < )
1+z \l+z 1+z \1+z

A3
+ ln(zmiﬁ)’ (5.5)

The overall chemical potential is = "+ z'¢, while the re-
duced pressure follows from (2.3) as

pi=4ma’p=x>T" +In(1 +x) —x + %xz/(l +x), (5.6)

which is the same as (4.6) in I and quite independent of z.

Since the expression for the pressure does not depend on
z and the overall chemical potential is also z-independent
except for the constant terms in the ideal-gas form (5.5), the
conditions for criticality and phase coexistence are identical
to those derived in I for the 1:1 model. The phase coexist-
ence curves are likewise identical: see I Fig. 1(a). In sum-
mary, the pure Debye-Hiickel theory predicts that the critical
parameters are independent of z and given by

T.=1/16, p,=1/64m x,=1,
(5.7)

Z.=plpdsT.=161n2-11,

while the numerical values are presented in Table II.

B. DHBjCIHC theory

Extending the DHBjDIHC pairing-plus-solvation ap-
proach for 1:1 electrolytes to z:1 electrolytes, we now in-
clude dimers, trimers, and all further primary clusters up to
(z+1)-mers, and add their free energies to the overall elec-
trostatic free energy to obtain
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FIG. 7. Examples of the variation of the pressure with the
chemical potential of the neutral species u, (shifted by an arbitrary
constant), calculated for a 3:1 electrolyte treated within the
DHBjCIHC theory with refined standard parameters. Two-phase co-
existence below 7. can be realized when the curve intersects itself
(while, as usual, the states below the intersection are not stable).
The plots are constructed parametrically as functions of x=ka using
increments of 0.03 around x,=1.570 for reduced temperatures T
=0.042 50, 0.043 345, and 0.043 80.

AT:pd) = 2 [F p,) + £ (T3 {p )], (5.8)

where v=+,—, 2, 3,... for positive ions, negative ions,
dimers, trimers, ..., respectively. To determine the degree of
association of the free ions into dimers, trimers, ..., we need
the association constants Km,z(fk) as computed in Sec. III.
Then, under chemical equilibrium the cluster densities p,,,
for 2<=m=z+1, satisfy the laws of mass action in the form

P =Kot o pap” expl gl + (m = Dt - ], (5.9)

where the excess chemical potentials are given from I by

TABLE II. Predicted critical parameters, T::DakBTC/zqé, pj
=p.a’, x,=«k.a, Z.=p.l pkgT., and the mole fraction of free ions,
Vie=(N,+N_)/N|,, for z: 1 hard-sphere electrolytes, as predicted by
the DHBjCIHC theory with “standard” parameters (refined for z
=3): see text. Monte Carlo results [7,28] are displayed in
parentheses.

z 10°T, 10%p, X, Z, Ve

DH 6.250 0.4974 1 0.9063 1
5567 (4.93;)  2.614(7.50) 1.038 0.2451 0.1828
4.907 (4.70) 6.261(9.3) 1366 0.1708 0.1164

3 4334(410)  11.90(125) 1570 0.1433 0.0838
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B(Ti{pgh) == af Map,lr,,,. (5.10)
We dub this extended treatment DHBjCIHC theory for
“Debye-Hiickel theory supplemented by Bjerrum association
into clusters that are solvated by the ionic fluid, and hard
cores.”

In order to obtain a canonical equilibrium state of the
(z+2)-component fluid, one needs, in addition to electroneu-
trality and the z mass action conditions, one extra parameter,
such as the overall density p or, more conveniently, the re-
duced Debye variable x=ka. Moreover, phase coexistence
entails the conditions (2.4) and (2.7), whereby one can show
that the equality of all the different electrochemical poten-
tials between coexisting phases can be replaced by the equal-
ity of the chemical potential of the neutral species alone
(dimer, trimer, or tetramer, respectively, for z=1, 2, or 3).
(For the charged species, the electrochemical potential must
match between two coexisting phases as mentioned in the
Introduction and discussed in Sec. VIII below in connection
with the Galvani potential.) One effective computational
strategy is thus to plot parametrically (p(x,T),m,(x,T))
(where n denotes the neutral species), and to seek for two
different values of x giving the same point: see Fig. 7. Espe-
cial care is needed in determining the coexistence curve be-
low criticality for z=3.

However, calculations in the single-phase region (above
T.) are relatively straightforward; consequently, for the pur-
pose of calculating 7. and p, another useful approach is to
generate supercritical loci which must intersect at the critical
point. We choose the maxima of the k susceptibilities (see
Sec. VII), which, indeed, lead to fast and accurate determi-
nations of 7, and p,.

C. Geometric parameters for the ion clusters

To proceed further in the quantitative evaluation of the
electrostatic contributions to the free energy as derived ana-
lytically in the previous sections, we must address the values
and thermal variations of the satellite separation radii, a;
(which should both depend on the cluster species m and the
valence z) and of the effective exclusion sphere diameters a,,
for m=2. Both these issues were discussed for the basic 1:1
model (the RPM) in I (see Secs. VI C and VII A) and so will
be treated fairly briefly here.

If we write ay=a[l+s,,,.(T)], it is, first, clear that s; ,,
vanishes when T— 0 for all m and z, so that hard-core con-
tact is, in fact, rather rapidly approached when T falls. In-
deed, for T°<0.055 [=T:(z= 1)], the analysis of I indicates
that s;;; decreases almost linearly with 7" from s,
=(0.08. When z>1, because of the tighter binding induced
by the larger central charges, which is only partly offset by
repulsions from the remaining m—1 satellite ions, one must
also have s, .(T") <sy,,.(T") when z’ >z.

Then, one should also observe (see Figs. 1 and 2 and
Table IT) that for larger values of z (=2), the critical tempera-
tures fall, so that the relevant values of s, (7") will again
be smaller than for the 1:1 model. Nevertheless, one must
notice from (4.13), (4.20), (4.24), and (4.29), etc., that the
dipolar and quadrupolar contributions (when the latter do not
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vanish by choice of the parameter p) are proportional to a%
and a‘l‘, respectively. However, in compensation, these pow-
ers are always accompanied by the inverse powers a;nl and
a;f, respectively, of the exclusion diameters a,, (m=2),
which are proportional to the corresponding values of a;(7)
and so act to reduce the overall sensitivity.

In I, the choice of the radius a, for the effective exclusion
sphere that approximates the true bispherical exclusion zone
of a dipolar dimer (see Fig. 3) was discussed by considering
various bounds and their mean values. It was decided to
accept, as most appropriate, the “angular average” value,
defined as the radius averaged over solid angle of the true
exclusion zone as measured from a symmetrically located
origin of a cluster in its ground state. For dimers, trimers,
and tetramers in their ground states, these angular averages
are, respectively,

a5 3 3 ay 5 a; 11
==+>m3, ==,  Ho—

a 4 8 a 4 a 8 (5.11)
=1.16198, =1.25, =1.375.

It transpires in the calculations leading to the critical pa-
rameters, that the predicted values for all three cases, z=1, 2,
and 3, are dominated by the properties of the primary neutral
clusters, namely, the neutral dimers, trimers, and tetramers,
which prove to be by far the most abundant species. In turn,
for fixed z, these are found to be the most sensitive to the
geometrical parameters. Accordingly, we have examined (as,
in fact, did Levin and Fisher) various other more-or-less
plausible criteria. One simple, but clearly rather arbitrary
possibility, is to choose a, so that the approximating exclu-
sion sphere has a volume matching that of the true exclusion
zone. We identify these parameters as “steric:” they take the
values

a3 a, 19" g, 7%
W a2 A
~1.19055, =1.33420, =1.45220. (5.12)

Another choice, since the interactions that are being trun-
cated by the exclusion zones are Coulombic, is the harmonic
diameters defined as the inverse of the angular average
(again taken from the clusters geometric center of symmetry)
of the inverse radial distance to the surface of the exclusion
zone. This leads to the values

GQ__ 6 a__ 2 a4
a (2+43m3)" a (1+In2) a (1+3n2)’
~1.13297, =1.181 23, =1.298 94.

(5.13)

Compared to the angular averages (5.11), these are some
2.5-5.6 % lower which leads to increased solvation. While,
in accord with I, we judge that the angular averages are to be
preferred, the predictions of the steric and harmonic param-
eters will be discussed below.

In as far as the satellite separation a,(7) exhibits a T de-
pendence, this will be inherited by the a,(T). However, in
the case of charged asymmetric dimers, as needed for z=2,
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the offset of the center of the effective exclusion sphere from
the clusters’ geometric center [as embodied in (4.19)] natu-
rally raises the question: Why not calculate the a,’s from the
offset center? Likewise, at finite temperature, the crucial
bending fluctuations of the trimers and tetramers obviously
suggest further modifications in the calculation of the a,’s.
The temptation to explore these refinements however, may
be resisted, first, because the effects are likely to be small,
and, just as important, because the resulting changes in criti-
cal parameter estimates will be less significant than result
from other approximations already accepted.

VI. QUANTITATIVE PREDICTIONS

At this point, it is imperative to re-emphasize that the
primary aim of the present study is to elucidate the basic
physical mechanisms underlying the systematic trends in the
various critical parameters that are induced as z increases,
and, at a semiquantitative level, to understand the magni-
tudes of the changes. Recall that the true values of T:(z), etc.,
are already known to satisfactory accuracy from the recent
simulations [7,28]. Consequently, a uniform theoretical treat-
ment of the 1:1, 2:1, and 3:1 models is of greater impor-
tance than are concerns for various specific subtleties that we
know, a priori, cannot yield truly reliable and accurate
critical-point data owing to our failure (not to say inability)
to treat adequately the essential critical fluctuations: see, e.g.,
[20]. The fluctuations, of course, serve to realize the univer-
sality class of the critical behavior [1,2,5-7,20] while, at the
same time, depressing the critical temperature and (for these
primitive electrolyte models) increasing the critical density
relative to the predictions of even “the best,” classical mean-
field, or self-consistent treatments.

With these points in mind, the principal explicit numerical
calculations of the electrostatic free energy terms that we
have undertaken have utilized the simple (7=0) angular av-
erages diameters a,, listed in (5.11) and, furthermore, have
accepted the “in-contact” or T— 0 limit, a;=a, for the satel-
lite ion separations in all clusters. It should be stressed, how-
ever, that the calculations of the cluster association constants,
K,,.(T) in Sec. III are not so constrained: rather, each satel-
lite ion is allowed to explore the full phase space restricted
only, at large separations, by the Bjerrum-type optimal cut-
offs, R, ..

A. 1:1 or restricted primitive model electrolyte

Here, we merely refine the results of Fisher and Levin
from I. Within the DHBjCI theory using the angular average

for a, (but without the contribution fHC), one finds

T.=0.05740 and p,=0.02779. (6.1)

We may supplement the results of I by recording that the use
of the larger steric parameter, a; [see (5.12)], modifies the
predictions for Tj. and pi by factors 0.9815 and 1.0086, re-
spectively, whereas, the smaller harmonic exclusion diam-
eter, b, yields factors 1.0195 and 0.9989. Hence, a larger
cluster size leads naturally to a decrease in Ti, since fewer

attractions are realized, and to an increase in p,.
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FIG. 8. Coexistence curves computed for 1:1, 2:1, and 3:1
equisized hard-sphere ionic fluids or primitive model electrolytes:
the solid lines correspond to the DHBjCI theory (without explicit
hard-core excluded-volume terms); the dashed curves include “stan-
dard” bcc hard-core terms. The exclusion diameters used are the
angular averages (5.11) except for the refinement a,/a=1.41 for the
3:1 model. Solid symbols represent simulation estimates for the
critical points [7,28] and open symbols the coexistence curves
based on precise RPM simulations [7].

The next step is to include the hard-core term f HC. Keep-
ing the angular average radius a5 and taking the bcc hard-
core value B,,/a?,=4/3\e‘"3, a choice of parameters that we
will refer to as standard, we find the critical parameters dis-
played in Table II. As expected, the introduction of hard
cores reduces both the critical temperature (by around 3%)
and the critical density (by 6%). These effects are stronger if
the low-density limiting value B,/ afr=27r/ 3 is used since 7',
then drops to 0.052 93, i.e., by a further 5%, whereas p,
becomes 0.024 69, falling by another 6%. Finally, using the
angular average a5 but with the choice B,/ a?,: 1.300, which
lies between the low-density and bcc values, we obtain the
“optimal-fit” estimates

T(z=1)=0.05455 and p.(z=1)=0.02542. (6.2)

The coexistence curves predicted by the DHBjCI theory
(with the angular average for a,) and by the DHBjCIHC
theory with standard parameters are plotted in Fig. 8. The

introduction of fHC significantly lowers the liquid sides of
the coexistence curves. One may notice that the Monte Carlo
data could well be better fitted by some choice of B, between
0 and the bce value.

Note that in addition to the “standard” values of 7', and
pj, listed in Table II, the last column, labeled y..., reports the
critical value of the mole fraction of unassociated ions,
namely,

with  y,=n N,/N, (6.3)

where y, is the mole fraction of species o while n, is its
ionic weight [i.e., n,=1 for free ions but n,=m for a cluster
of one positive charge and (m—1) negative charges]. For the
1:1 model, we have y,.=y_.=0.0914 while the critical mole

Ye=yit Yo,
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TABLE 1II. Critical-point mole fractions, y,, of the primary
clusters (expressed as percentages) according to their total charges,
¢y for z:1 models described by DHBjCIHC theory (with “stan-
dard” parameter values). Unlabeled clusters are monomers.

qs/q0 = -1 0 +1 +2 +3

1:1 9.14 81.72 9.14 — —
(dimer)

2:1 10.33  72.93 1543 1.31 —
(trimer) (dimer)

3:1 8.04 77.17 11.13 3.32 0.34
(tetramer)  (trimer)  (dimer)

fraction of the associated ion pairs is y,.=2p,./p=0.8172:
see Table III. The fact that (within the DHBjCIHC theory)
almost 80% of the ions are associated into dipolar ion pairs
near criticality makes it less surprising that a model of neu-
tral but charged hard dumbbells might have a comparable
coexistence curve, as some simulations suggest [45,46].
Within this DHBjCIHC approach, we remark that an in-
crease in the value of the association constant K ; yields a
decrease of T for a 1:1 electrolyte: with the standard pa-
rameters, we ﬁnd that varylng K, 1 by £5% around the value
(3.5) results in changes of T.(z=1) of order +0.2%. While
changing an association constant does not affect directly the
free energy of our model (indeed, Tﬁ is the same in DH
theories with or without ion association [10]), it nevertheless
affects the various mole fractions, which do enter in the sol-

vation free energies f? To our knowledge, the variation of

the sum =_f (F;l on increasing the association constant can
only be determined post facto: for z=1, our results indicate a
more weakly coupled system with a lower critical tempera-
ture, in accord with the findings of Jiang et al. [41]; however,
for z=2 and 3, we find the opposite trend on varying K, ., as
noted below.

Let us also recall that I presented numerical and graphical
data showing how the predicted values of the critical param-
eters depend on the choices made for the mean ion separation
ay and for the exclusion radius a,. These results may reason-
ably be taken as indicative of the corresponding shifts that
are likely to arise in our analysis of the 2:1 and 3:1 models.

2,20

B. 2:1 hard-sphere electrolyte

We report first the basic DHBjCI results, using the angu-
lar averages a, and aj listed in (5.11): they are

T (z=2)=0.05235 and p.(z=2)=0.06429. (6.4)

The corresponding coexistence curve is plotted in Fig. 8.
One might note, first, that as in the 1:1 model, the shape of
the liquid side of the coexistence curve below about
0.9 T.(z=2) becomes markedly concave. This behavior,
while violating no known thermodynamic or other condi-
tions, certainly appears unphysical. Furthermore, by com-
parison with the true results indicated by the simulations, this
concavity must be judged as quite misleading. No doubt it
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results from the failure to satisfactorily describe the correla-
tions, and thence, the free energy of the low-temperature
liquid at densities p"=0.15 via a collection of free ions plus
fairly compact neutral and singly charged clusters. This gen-
eral issue is also addressed briefly in I Sec. 8.5: it may be
noted that the standard MSA exhibits similar although some-
what less pronounced features: see I Fig. 8(d).

On the other hand, the downward shift in 7, and the
marked increase in p, reproduce most satisfactorily both the
trends and the magnitudes obtained in the simulations [28]:
see Figs. 1 and 2. These trends are also reproduced fully by
the other choices of exclusion diameters. However, as could
be expected, the sensitivity to the size of the bigger clusters
is enhanced in the 2:1 case compared to the 1:1 model.
Indeed on using the steric diameters, we find T =0.048 50
and pr 0.0737 implying a drop by 7.3% and an increase by
15%, respectively. With the harmonic parameters, the con-
clusions are reversed yielding 7.=0.05574 and p,
=0.060 12. As discussed below (and see Table II), a larger
fraction of the ions are bound in the clusters when z=2 com-
pared to z=1, thereby amplifying the sensitivity to the cluster
characteristics.

This enhanced sensitivity is also found for the hard-core
effects: thus the values of T: and p: predicted by the standard
DHBjCIHC theory, listed in Table II, are lower by 6% and
3% relative to the values in (6.4). erewrse the low-density
value of B, yields T =0.043 75 and pL =0.064 22, which se-
riously overestimates the hard-core effects, making T drop
to well below the Monte Carlo estimate. However the
“optimal-fit” choice B,/ a?,: 1.300 yields the values

T(z=2)=0.04691 and p.(z=2)=0.06285, (6.5)

which, indeed, provide the best fit of our analysis to the
Monte Carlo data (see Figs. 1 and 2). However, the corre-
sponding coexistence curve is excessively narrow even com-
pared to the standard prediction shown (dashed) in Fig. 8.

On the other hand, it transpires that the sensitivity to the
association constant is not so great. Thus in the DHBjCI
approach, changing the cutoff for K,, by +20% induces
changes in K , of order +1%, leading to shifts in T of order
+0.003% and in p, of order +0.2%, totally neghgrble within
our level of approximation.

Returning to the standard DHB]CIHC theory, one sees
from Table II that it predicts a drop in T (compared to the
1:1 electrolyte) of order 12% and an increase in p, of 140%.
These results are to be compared with the Monte Carlo re-
sults indicating a drop in T of 5% and an increase in pC of
around 24%. The predrcted Tx and pc agree within 4% and
33%, respectively, with the current Monte Carlo estimates.
The overall quantitative results are therefore fairly close to
the Monte Carlo values, indicating that the main physical
features have been captured by the theory.

As regards the composition of the fluid at criticality, one
learns from the last column of Table II that fewer than 12%
of the ions now remain free or unassociated, even less than
predicted in the 1:1 case. As can be seen from Table III, the
free +2¢, ions are strongly depleted, less numerous than the
—q, anions, by a factor 1/8. Indeed, the numbers of posi-
tively charged dimers roughly match the oppositely charged

041501-15



AQUA, BANERJEE, AND FISHER

free anions. However, while the predicted overall association
rate is larger than for the RPM, the fraction of the ions bound
into the neutral or “molecular” clusters (now trimers) is some
11% smaller. Needless to say, the values of the y, listed in
Table III verify the electroneutrality condition that implies

1
2y, +5y,-y_=0.

C. 3:1 hard-sphere electrolyte

As before, let us first record the predictions of the basic
DHB;|CI theory using the angular averages, needed now for
a,, as, and ay, the last for the tetramer which we expect to be
the dominant species near criticality. We find

T:(z=3)=0.05054 and p.(z=3)=0.1063, (6.6)

where the corresponding coexistence curve is again dis-
played in Fig. 8. These values, as is also clear from Figs. 1
and 2, continue to reproduce the appropriate trends with in-
creasing z as originally revealed by the Monte Carlo simula-
tions. However, as also evident in Fig. 1, the drop in T: of
only 3.5%, relative to the 2:1 model, is significantly less
than indicated by the simulations: in fact, the result (6.6)
suggests a concave variation for T:(z) rather than the convex
behavior maintained by the simulations up to z=4 [27,28].

The “culprit” is obviously the failure to take explicit ac-
count of the hard-core excluded-volume effects important
above and even at the predicted critical density which is 65%
larger than for the 2:1 model. The very slow decay of the
liquid side of the coexistence curve when p increases, as seen
in Fig. 8, strengthens the point. Indeed, the standard
DHBjCIHC theory yields

T'(z=3)=0.04580 and p.(z=3)=0.1089. (6.7)

Relative to the 2:1 model the critical temperature has now
fallen by 12.5%, which may be compared with the Monte
Carlo drop of 12.8% (see Table II). However, the value of p,
has changed rather little.

These predictions are not quite those entered in Table II
because it was deemed worthwhile for this case to explore
further the influence of the exclusion radii. In particular, as
discussed in I Sec. VI C, the mean size of a physical cluster,
for any sensible definition will grow with increasing tem-
perature. Hence, in choosing the tetramer exclusion radius
ay, it is reasonable to consider for use near 7. a value some-
what larger than the 7=0 angular average a5=1.375a [see
(5.11)]. Having examined the effects on the values of both T:
and p:, the ratio

ayla=1.410 (6.8)

was selected as a preferred refinement of the standard param-
eters. (The increase of 2.6% brings the ratio to almost mid-
way between aj/a and the steric value aj/a=1.452.) Ac-
cordingly, (6.8) has been adopted for computing the results
displayed in Table II, in Figs. 1 and 2, and elsewhere below;
the corresponding coexistence curve for z=3 is displayed
(dashed) in Fig. 8.

Evidently, the trends observed as z increased from 1 to 2
are now continued regularly; and the previous concave varia-
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tion of T.(z) is no longer so apparent. Furthermore, the
trends still mirror rather faithfully those given by the simu-
lations: These indicate a rise in pj by 35% when z changes
from 2 to 3; the standard calculations yield a 90% relative
rise which is significantly greater, but, as seen in Fig. 2, not
at all unreasonable. Indeed, T: agrees with the simulations to
within 6% while pf_ agrees to within 5%. Overall, both the
magnitudes of T:(z) and p:(z) and the trends with z must be
judged quite successful!

From Table III we see that the overall fraction of free ions
remaining at criticality has now dropped still further to about
8.4%. At the same time close to three-quarters of the ions are
again bound in the neutral, molecular clusters (now tetra-
mers). The fraction of free, unassociated cations of charge
+2q, continues to fall dramatically as z increases: on a heu-
ristic basis, a decay like y +,C~e"’z seems not implausible.
Following the thought of Shelley and Patey [45], one might
also speculate that a system of rigid, neutral molecules or
(z+1)-mers formed of z+1 equisized hard spheres with z of
charge —g, attached symmetrically to a central sphere of
charge +zg,, might continue to mimic the z:1 equisized
hard-sphere ionic systems, at least up to z=<12. Beyond that,
packing effects in the satellite ions could play an important
role.

It is probably appropriate to point out, as anticipated, that
our z=3 predictions are less robust than those for z=<2. Thus
the “optimal-fit” assignment B,/ af,= 1.300 together with the
angular averages a5 and af but taking a,/a=1.390 yields

T (z=3)=0.04136 and p.(z=3)=0.1171, (6.9)

which reproduces the Monte Carlo results quite satisfactorily.
However, this choice once more leads to a coexistence curve
which falls much too steeply when 7<<0.9 T,. Again, the
low-density value for B, gives T;<0.038 well below the
simulation value.

On the other hand, if one uses the [5/2] Padé approxi-
mant for the association constant integral 755 in (3.12) in
place of the more accurate fit (3.13) one finds that the result-
ing 4% decrease in Kj 3 (see Fig. 5) leads to a decrease in T:
of only 0.14%. The effect on p: is similar and hence, post
facto, of little consequence.

Finally, it is interesting to note from Table II that the
Debye length at criticality, namely, &p.=1/k.=alx,, de-
creases steadily as z rises. In essence, this merely tells us that
larger central charges in ionic clusters lead to tighter screen-
ing. It should be noted, however, that &,(T, p), as defined in
(4.3) is not really susceptible to either physical measurement
or simulation since our definition depends on having a well-
defined, but intrinsically somewhat arbitrary decomposition
of the system into distinct species of ionic clusters. On the
other hand, the prediction that the critical pressure ratio, Z,
=p./pkgT,., decreases strongly as z increases (see Table II,
column 5) should be open to test by simulations.

VII. SPECIAL INFLECTION LOCI

In determining numerical values of critical parameters
from a given model free energy, it is natural to start by cal-
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culating the two sides of the coexistence curve, p;(T) and
p,(T), using techniques, such as illustrated in Fig. 7: in prin-
ciple, one can then raise T and monitor Ap= p,(T)-p,(T),
determining 7, from the vanishing of, say, Ap? and, then, p,
from, say, %(p,— p,) evaluated at T, .. In practice, however,
this method proves tedious and as experience (and a consid-
eration of Fig. 7) reveals is poorly adapted for providing
precise and accurate (i.e., reliable!) values of T, and p,.

An effective alternative is to confine attention to the one-
phase region above 7, where, in the first place, calculations
are more straightforward since, in particular, no “two-phase
solutions” need be sought. Then, as demonstrated recently in
simulations [5,31,32] (although also of value in studying ex-
perimental data) one may seek various loci, say p®(7),
which all converge on the critical point. Since the isothermal
compressibility xy=(dp/dp)s/p diverges at criticality, one
obvious such locus is provided by those densities, say po(T),
on which, at a fixed temperature above T, the compressibil-
ity achieves its maximum. But by considering the inflection
points of the standard isothermal plots of p vs volume or vs
density, one soon realizes that this locus is but one of a
natural family of k loci, say p®(7T) [31,32,47], on which the
so-called k susceptibilities, x"(T,p)=x(T,p)/p*, attain
their maxima: equivalently, these are just the loci of isother-
mal inflection points of plots of p vs p*.

Because of their potential usefulness in simulation and
experiment, the behavior of the k loci in the scaling region
close to criticality has been investigated in some detail
[32,47]. In the case of general, nonclassical critical points,
they exhibit nontrivial and informative singular behavior as
functions of r=(T-T,)/T, as k varies. However, for classical
critical behavior, as relevant here, all the k loci asymptoti-
cally approach the critical point (T.,p,) linearly in the (T, p)
plane. Thus by numerically determining two or three loci—
for the results reported here we utilized k=1, 0, and —1—and
solving for their mutual intersection point, one may locate T,
and p,... In practice the method proves efficient and precise.

More generally, however, the nature of the loci further
from criticality and a possibly characteristic dependence on z
is a matter of interest to which we now turn.

A. Debye-Hiickel predictions

To gain a little perspective, let us examine, first, pure DH
theory (as presented in Sec. V A) where analytical calcula-
tions are feasible. Three cases arise as illustrated in Fig. 9.
When k=1, the pressure isotherm always has an inflection
point above T, characterized by ka=x=1. The (k=1) locus
is thus a straight line starting at (7.,p.), namely, p!"*(7)
=T"/44. When k> 1 one sees that by construction, x(k) di-
verges to +% when p—0 at fixed T; but this divergence
competes with the localized maximum driven by criticality.
As a consequence, for T above but not too far from 7., when
p drops beneath p, one first encounters a maximum in y*
and then a minimum before the divergence as p— 0. How-
ever, as T is raised at fixed k one eventually encounters an
annihilation or terminal point (7, ,p,,) at which the mini-
mum and maximum merge and the k locus is terminated with
a horizontal slope, i.e., a tangent parallel to the p axis. Above
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FIG. 9. Loci of the maxima of the k susceptibilities in DH
theory: all these & loci intersect at the critical point, Tj=0.0625 and
p;20.004 97 while the bold curve traces their termination points.
The curved solid locus corresponding to k=ky=9/8 displays a ver-
tical slope at criticality while the straight solid line corresponds to
k=1. The dotted, dot-dashed, and dashed curves are plots for k
=0.70, 1.06, and 1.20, respectively.

T, the susceptibility X*(T, p) falls monotonically as p in-
creases and no “critical maxima” are realized.

When k<1, a similar scenario emerges for p>p,.. As a
result there is, overall, a termination boundary in the (p,T)
plane with a minimum at the critical point. For DH theory
this takes the form of the bold curve in Fig. 9. For k<1 the
termination boundary approaches asymptotically the line

*

Tg,k(<1) ~41p”/(2++3)? while for k> 1 and large p one has

T~ 47p"/(2=13)2. As also clear from Fig. 9 for values
of k differing much from 1, the k loci are rather short (and
hard to locate numerically). The asymptotic slope of the gen-

eral k locus at criticality is given by

(dpP1dT) .= 2/ 7) (kg — k), (7.1)

where, within DH theory one has ky=9/8 (for all z).

B. DHBjCIHC predictions

How are these k loci affected when the DH approximation
is supplemented by association, solvation and hard-core ef-
fects, and how do they evolve with z? Some results obtained
with the full theory are displayed in Fig. 10. As expected
from our analysis of the DH theory, most of the k loci do
indeed terminate with a horizontal slope at some point within
the range of investigation. Most of the values of k examined
are smaller than 1 and the k loci bend towards high density.
But, as in the pure DH theory [and as could be expected from
the ideal high-T low-p limit, where (dp/dp)=T], when k
>1, the k loci do indeed bend towards low densities. Fur-
thermore, some loci are present only in a small neighborhood
of the critical point. Indeed the (k=-1) locus is not visible on
the scale of Fig. 10, and the (k=0) loci are also quite small
compared to those for k=1. In the 1:1 model treated without
hard-core terms, the k=1 and k, loci (with vertical tangent at
criticality) are quite extended, and the k=1 locus extends to
large values of p. However, these features are sensitive to
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FIG. 10. Plots of the k loci according to DHBjCIHC theory
(using the preferred parameter values) for z=1, 2, and 3. The solid
lines correspond to the choice ky(z) yielding a vertical slope at
criticality. The dotted, dashed, and dot-dashed lines correspond to
k=0, 1, and 2, respectively.

both the value of z and the inclusion of the hard-core terms.
Indeed, with hard-core corrections the termination boundary
rises rapidly when p> p.. Moreover, when z increases, the k
loci terminate sooner when T is raised. Likewise, the values
of ky(z), for which the loci arrive vertically at the critical
point depend strongly on z: we find k,=0.93, 0.18, and
—0.87, for z=1, 2, and 3, respectively. It would be interesting
to test whether this trend is borne out in simulations and
whether it relates to the corresponding Yang-Yang ratios
[32,48].

VIII. INTERPHASE GALVANI POTENTIAL

As mentioned in Sec. I A, when charged species are
present in an equilibrium system, the electrochemical poten-
tials for each species must be equal in coexisting phases.
This necessitates the introduction of an overall, absolute po-
tential difference, A, that must, in general, exist between
distinct phases (even when only in possible rather than actual
coexistence). The existence of such a potential, e.g., between
an electrode and an electrolyte, is well recognized in the
literature [33-35,37] and is appropriately named a Galvani
potential [33,34]. We have added the prefix “interphase” to
indicate that, speaking loosely, A¢ is spontaneously gener-
ated in an otherwise uniform medium when it decomposes
into two (or more) phases beneath (or above) some critical
point. Hence, equating the electrochemical potentials of both
+ and — species in the vapor and liquid phases gives

/'7’+v + Z(_ﬁv =My + Z(Zl’ la—v - &U =Hoy— %l with

¢'yE (ﬁyQO/kBT’ (81)

where ¢, is the electrostatic potential in phase 7. In fact, one
soon realizes that with the chemical equilibrium conditions
(equating the sum of the chemical potentials of the reactants
and products), all these equalities for the different species,
are equivalent to any one of them.
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FIG. 11. Plots of the reduced interphase Galvani potential A
=qoA@/kgT for a z:1 electrolyte as predicted by the pure Debye-
Hiickel theory.

The RPM is clearly a special case in which the gas-liquid
interphase Galvani potential vanishes identically for all T
owing to the symmetry in charge and in all other interspecies
interactions. As soon as this symmetry is broken in any way,
the gas and liquid phases will be distinguished by a nonzero
Galvani potential.

To examine the issues further, let us adopt, first, the sim-
plest treatment, namely, pure Debye-Hiickel theory with,
however, z>1 as discussed in Sec. V A. Using (2.5) and
(5.1), and the electroneutrality zp,=p_, etc., the partial
chemical potentials for the positive and negative ions are,
respectively,

3

. 1 A
In(x2T* 1( - ) 8.2
+Inx )+n1+z477a3 ®2)

=
M= or 1 +x)

z A}

1+z 4md®

. *
p-= 2zT°(1 +x)

+In(x*T") + ln( ) . (8.3)
By substituting in (8.1) and solving for the electrostatic po-
tential difference, we obtain

_ 1 _ 1
AH(T) = —[z 1n(ﬂ> - —1n<ﬂ)], (8.4)
z+1 P/ 2 \Ppiy
where A= qoAp(T)/kgT and Ad= by, — b, On using the
electroneutrality constraint, we obtain the much simpler form

AG(T) = (1 =z HIn[p(T)/p,(T)]. (8.5)

As anticipated, the predicted Galvani potential A¢ vanishes
identically when z=1.

Figure 11 presents plots of this Debye-Hiickel result for
A¢ vs T for various values of z. Note that when T ap-
proaches 0 the form (8.5) implies that A¢(T) should ap-
proach a constant value since p,(7) vanishes exponentially
fast with 1/7 [9]. We should remark that within DH theory
the ratio p,/p, is independent of z at fixed 7. By expanding
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p/(T) and p,(T) around p,. in powers of t=(T.—T)/T,, one
finds A¢%B¢ 8, with since the theory is classical, B:%.

In this simple DH analysis, the Galvani potential is rather
trivially proportional to the logarithm of the ratio of densities
in the two coexisting phases. One might, perhaps, suspect
that this indicates the existence of some simple “universal”
result not depending significantly on the detailed micro-
scopic interactions. For a better understanding showing that
this idea is false, let us, following Bjerrum [15], allow for the
formation of dimers by association, neglect all solvation ef-
fects arising from their dipole and higher moments, and treat
the dimers as of the same size as the free ions. This allows us
to use the standard DH free energy (4.16) for the electrostatic
contributions, and thence to write the total free energy den-
sity as

AT Hph) = FPUT Hph + 2 FMp,).

o=+,-,2

(8.6)

Now the electrochemical equilibrium conditions always ap-
ply and thus, Egs. (8.1) give the Galvani potential correctly.
Notice, however, that for z> 1, the dimeric ion pairs carry a
net charge (z—1)g, so that, although electroneutrality must
still be respected in both phases, the simple ratio p,/p_, will,
in general, be different in the liquid and the vapor. Conse-
quently, the simple result (8.5) no longer applies! Clearly, the
ratio of p, to p_ depends on the density, p,(7), of the dimers
in the two phases. This, in turn, must depend via the mass-
action laws, on the association constant K, (7) of the dimers
which then determines the overall degree of association, say,
a,,(T), which will vary very differently in each phase 1y.
Accordingly, we may write p,=a,(T)p and impose electro-

neutrality in both phases to simplify (8.4). The result for A¢
may be written

Z <Z—a21(Z+1))
In

z+1 \z—ap(z+1)

1 (1—a2,(z+1)
2(z+1) \1-ay,(z+1)

Ad=(1 —z‘l)ln(ﬂ) +
Pv

), (8.7)

which, by comparison, demonstrates that, in general, the
simple form (8.5) must be modified by nontrivial
temperature-dependent terms that depend on the details of
the ionic interaction, etc. Nevertheless, the predicted leading
temperature variation will still reflect the ## form character-
izing the coexistence curve. The analysis leading to (8.7)
involved only the formation of non-neutral dimers; but it is
clear that in any realistic treatment there will be a variety of
charged species present in temperature-varying proportions
determined by microscopic details. Thus simple results for
the interphase Galvani potential should not be anticipated.
On the other hand, from our explicit calculations of the
coexistence curves for the 2:1 and 3:1 models, we may
determine A(T) via (8.1), merely by computing the differ-
ence in u_ in the vapor and liquid phases (which quantity
arises naturally in the computations). The results are pre-
sented in Fig. 12, where the temperatures have been normal-
ized by the respective critical temperatures to facilitate com-
parison. The plots are qualitatively similar to those predicted
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FIG. 12. The reduced interphase Galvani potential plotted vs
T/T,. The solid lines show the predictions of the DHBjCI theory
(with B,=0), the dashed curves, the DHBjCIHC theory (with re-
fined standard parameters), and the dotted plots, the DH theory.

by the pure DH theory. However, we note that in the full
theory with standard parameters, it is not possible to draw a
conclusion regarding the trend of A¢ with z.

The observability of A¢(T) in a real system is elusive if
not in principle impossible [33,34]; however, it seems that it
should be possible to measure A@(T) in simulations. Specifi-
cally, the potential distribution theorem of Widom [49,50]
provides a direct way of sampling the (absolute) electro-
chemical potential via a suitably weighted average interac-
tion of a “ghost test particle” with the interacting ions in the
system which do not “see” the ghost particle. The electro-
chemical potential of a (ghost) ion of specific charge should
thereby be open to estimation in liquidlike and vaporlike
simulations of the restricted primitive models (or more gen-
eral models). The appropriate difference should then provide
a value of Ag(T).

IX. DISCUSSION

Our aim has been to understand, both qualitatively and
semiquantitatively, the role of charge asymmetry in the criti-
cality of electrolytes. We have extended the DHBjDIHC
theory of Fisher and Levin [9,10] for 1:1 electrolytes to 2: 1
and 3:1 electrolytes by accounting for association of ions
into charged clusters and including the interaction of the
clusters with the screening ions (solvation). Thus we have
labeled the extended theory DHBjCIHC, where the CI now
stands for the cluster-ion interactions and, for a z:1 system,
explicit account has been taken of the monomers, with
charges —g, and +zq, of dimers, trimers, ..., up to neutral
(z+1)-mers. The principal results, summarized in Figs. 1 and
2, indicate that the reduced critical temperature, Tf_(z), de-
creases while the critical density increases with increasing
charge asymmetry. Furthermore, these trends and the magni-
tudes of the changes with z agree with the behavior revealed
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by computer simulations and present a significant improve-
ment over the original DH theory.

To understand the results in physical terms, consider, first,
the pure DH theory which predicts that the critical tempera-
ture and density are independent of charge asymmetry: as
shown in Figs. 1 and 2. The only direct attractive interactions
accounted for in this theory are those between the ions of
opposite charge. These induce a Debye screening cloud
around each (monomeric) ion and the associated ‘“solvation
free energy” drives the vapor-liquid phase separation below
T.(z), the vapor phase being stabilized by the greater entropy
available at low densities.

The temperature is appropriately normalized by the en-
ergy of attraction of the opposite ions at contact, namely, &
=|g.q_|/Da. Under this normalization [see (1.1)] the maxi-
mum strength of the attractive interactions is always & and
the pure DH theory therefore predicts that the (reduced) criti-
cal temperature, T.(z), is independent of z.

The DHBjCIHC theory, however, also takes into account
the formation of ion clusters and treats them as distinct spe-
cies, albeit in mutual chemical equilibrium which calls for
the calculation of association constants. For example, for 2: 1
electrolytes, the dimers are species with charge +¢, while the
trimers are neutral. The two principal attractive interactions
in this case are of magnitude & between the positive and
negative free ions, but only :%s between the dimer and the
negative ion. (The interaction magnitude is not precisely %s
since the dimer has a different effective exclusion zone ra-
dius, i.e., a, # a.) Thus, relative to the 1:1 case, the effective
attractions are smaller for 2:1 electrolytes which explains
why the critical temperature should be expected to decrease.
The same argument applies for larger z when there are more
intermediate positively charged species between the free
positive ions and the neutral clusters. The strongest interac-
tions is between two free, oppositely charged monomers and
is always of magnitude &: thus the overall effective interac-
tion decreases with increasing z and the critical temperature
decreases correspondingly.

To understand the trend exhibited by the critical density,
P:(Z) =p.a’, one must focus on the role played by the neutral
clusters. As originally shown by Fisher and Levin for 1:1
electrolytes, the association of free ions into neutral dimers is
highly significant at criticality. Indeed, according to our the-
oretical estimates they constitute about 82% of the overall
ion density. For 2:1 electrolytes, our analysis likewise indi-
cates that about 73% are bound in neutral trimers while for
3:1 systems the figure is 77% for the neutral tetramers. As a
consequence, not only are the relative effective charges of
the charged species decreased by association (as just argued)
but, in addition, the overall effective fraction of ions in
charged clusters is diminished when z increases. In leading
approximation the solvation of a given cluster (charged or
neutral) is achieved only by charged species. To obtain com-
parable solvation free energy therefore necessitates higher
overall ion densities and, thereby, an associated increase in
critical density. The effect is reflected more concretely in the
expression (4.3) for the effective inverse Debye length,
«(T,{p,}), whose critical value similarly increases with z:
see Table II.
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FIG. 13. Reduced critical temperature, Tj(z), as a function of the
charge asymmetry parameter w=(z—1)/(z+1) as found by simula-
tions (open circles) [27,28] compared with the present calculations
(filled circles and triangles) and other current theories: MSA, SPB,
and MPB [18,19], a “new mean-field theory” (NMF) [30], and a
field theoretic expansion (NO, dashed curve) [29]; note that the
predictions of the field theoretic approach have been divided by 10
to bring them within the compass of the figure.

This accounts for the trends displayed in Fig. 2. It is in-
teresting to notice, however, that while the Monte Carlo re-
sults display similar increases in p,(z), the magnitudes of the
increases are rather smaller. It seems likely that this is asso-
ciated with our neglect of the solvating influence of the neu-
tral clusters which may be envisaged as contributing to a
change in effective dielectric constant. However, the increas-
ing sensitivity of the results to the explicit hard-core
excluded-volume terms when z increases must also be noted.

It is also appropriate to recall here that our present analy-
sis takes no account of critical fluctuations. Extensive studies
demonstrate that the effect of the fluctuations is to lower 7,
by 5-10 % or more relative to basic mean-field-type theories
while having little effect on the slope of the coexistence
curve diameter. In addition, the coexistence curve is flattened
(since B< %) As evident from Fig. 8 the present calculations
are quite consistent with these general expectations.

Our results for T,(z) and p.(z) are contrasted with those of
other available theories in Figs. 13 and 14. For this compari-
son, we have used the standard parameters of the DHBjCIHC
theory (with a refinement for z=3) as described in Table II
and Sec. VI. We may note, first, that the mean spherical
approximation (MSA) [18,19], like the original DH theory
[8], predicts that T and p, remain independent of z. This
seems primarily due to the failure to take ion association into
account in a sufficiently explicit way. A field-theoretic ex-
pansion approach advanced by Netz and Orland (NO, dashed
curves) [29], in which the particle hard cores are represented
by a sharp, large-wavelength cutoff, predicts that Tj(z) in-
creases strongly with z while p.(z) falls precipitously at
small z (<1) and then rises slowly. In fact, the only previous

041501-20



CRITICALITY IN CHARGE-ASYMMETRIC IONIC FLUIDS

14 1:3 1:2 1:1 2:1 31 41

| T T T T T T T i
pL i
| DIIBjCIIC]
0.10F DHBjCI
I MC 4
0.08F —
0.06 -
004  NO A oA
I N 7 4

Xy NMF
0.02 MSA S —~xSPB -
L ¢ﬁ/i[p3 4

O 1 1 1 1 1 1 1 DH
-1 -0.5 1

0 05
(z-Diz+1)

FIG. 14. Simulation estimates (open circles) for the critical den-
sity, p.(z), compared with those of the present calculations (filled
circles) and of other approaches: the labels, symbols, etc., have the
same significance as in Fig. 13.

theory known to us that matches the sign of the trends re-
vealed by the simulations is the symmetric Poisson-
Boltzmann (SPB, crosses) integral equation analyses by Sa-
bir, Bhuiyan, and Outhwaite [18]. However, not only is the
critical temperature for the RPM predicted by the SPB theory
significantly too high (at 7.=0.0715) but the proportionate
changes with z are quantitatively much too small (by factors
of 5.6 and 6.4 for the 2:1 and 3:1 models, respectively).
Furthermore, the modified Poisson-Boltzmann (MPB) ap-
proach developed by the same authors, which they argue
should be quantitatively and qualitatively better than the
SPB, predicts the opposite trend for 7'.(z). Finally, we note
that recently devised mean-field theories, based on Kac-
Siegert-Stratonovich-Hubbard-Edwards transformations of
the Boltzmann factor [30], lead to critical temperatures
which increase significantly with charge asymmetry again in
strong contradiction to the Monte Carlo estimates (open
circles in Figs. 13 and 14).

While our theoretical analyses have been based upon fun-
damental principles and provide insight into the variation of
the critical parameters of charge-asymmetric primitive model
electrolytes, it must be recognized that the results rest upon
various approximations. Thus, one of our main approxima-
tions entails the choice of an equivalent sphere to represent
the exclusion domain of a cluster. Moreover, we have not
explicitly considered higher order association. That, despite
these and other approximations, we find both the correct
trends and reasonable quantitative agreements with the
Monte Carlo simulations, reinforces our conclusion that the
main physical features linked to charge asymmetry have
been appropriately captured by the theory.
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APPENDIX A: ASSOCIATION CONSTANT FOR THE
TETRAMER

Consider a cation with charge g, =zq, at the origin. With-
out loss of generality let the first satellite charge —¢g, be on
the x axis at r;=(r;,0,0) in Cartesian coordinates as shown
in Fig. 4. Taking advantage of the azimuthal symmetry, let
the second satellite charge be in the x-y plane at r,
=(r, cos 60,5, 1, sin 6}, 0), where 6, is the angle subtended
by the satellite pair (1, 2) at the origin. Then the most general
coordinates for the third satellite are r3;=(r3cos 63,
—r3 sin 03 cos @, —r3 sin 6,3 sin @), where 6,3 is the angle
subtended by the satellite pair (1, 3) at the origin and ¢ is the
angle between the (1, 2) and (1, 3) planes with ¢=0 repre-
senting the planar configuration.

The ground state is clearly given by ri=r,=r;=a, 6,
=6,3=2m/3, and ¢=0. Noting that the main contribution to
the integral defining Kj 5 [see (3.2)] comes from near T'=0, it
is helpful to define rescaled coordinates

6, = (01, - 2m/3NT, 6= (65— 2m/3)NaT,

L= (rila-1)IT", (A1)

for i=1, 2, 3. Then, by expanding about the ground-state
configuration for small 7", one can write the configurational
energy to leading order as

3

Ey. 3C,. : P TP,
. = =-C li-—=¢ " ——=(6,"+6,"+ 6,6,
T T “E 8V3° 123 2T

+O(T), (A2)

where C; ,=1-1/ \3z. The infinitesimal phase-space volume
can likewise be written

drdr,drsy = a’T3dl dlydly X 87 sin®(27/3)
X (zT")*2d6; d6, de[1 + O(T)]. (A3)

To evaluate the defining integral in (3.2) we diagonalize the
angular quadratic form in (A2) by introducing coordinates
X=(6+6)1\2 and Y=(6-6)N2,  (Ad)
to obtain
0,2+ 657+ 6,6, = 2(3X> + Y?). (A5)

The integrals in (3.2) can then be evaluated in the form (3.3),
with Jacobean and eigenvalues
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1 5 5
__/—_/—} (A6)

Ji=2> and {\y=
T 843724437843

Interestingly, the V7~ corrections (and all subsequent half-
integer power-law corrections) arising in (A2) vanish upon
integration because they are all associated with odd powers
of the angular variables. An expansmn for 75, can then be
found by carrying the expansions in (A2) and (A3) to higher
order in 7", and, hence, to higher orders in the /; and in ¢, 6,
and 6,. The resulting Gaussian integrals can be performed—
analytically in low orders and numerically, with increasing
difficulty, in the higher orders—Ieading to the asymptotic
expansion (3.12).

APPENDIX B: MONTE CARLO EVALUATION OF THE
TETRAMER ASSOCIATION CONSTANT

To evaluate K; ; numerically, in order to validate the Padé
approximants constructed from (3.12) and to correct them at
higher temperatures, we undertook Monte Carlo integration
computations following accepted procedures [44]. However,
the general sample-mean method, at first yields results with
errors significantly too large at the small values of 7" needed
for ionic criticality. The reason is simply that the integrand of
K55 is sharply peaked around the ground state, the peak
sharpening as 7" is lowered and hence becoming less fre-
quently sampled. To improve the accuracy, we used a
“weighted sample-mean method,” in which random numbers
are generated with a weighting chosen to sample the inte-
grand more often near the peak. Thus, in one dimension, for
example, to evaluate /=7 b f(x)dx, one needs to calculate

_2 f(x)

I_ ,1p(x)

(B1)

where p(x) is the probability density function used to gener-
ate the random numbers, normalized in the interval [a,b],
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and n is the total number of random points x; € [a,b]. The
weighted random numbers are generated from the uniform
random numbers o € [0, 1] by solving for x in

P(x) = fx p(x")dx' = 0. (B2)

—o0

The density function should be chosen so that this relation
can be solved for x algebraically.

We generalized this procedure to the geometry of the tet-
ramer. For the radial integrals, we used the density function

p(r)=A,exp(=\,7)

and A,=1/[Rexp(-\,r)dr. This weighting mimics the peaks
in the integrand almost exactly. For the angular variables the
optimal weighting is more complicated because the peaks are
Gaussian leading to an equation (B2) that cannot be simply
inverted algebraically. Instead, we used exponential weight-
ing

with \,=C34/T,  (B3)

plw)=A,exp(— A (B4)

with w=¢, 6,=0,,—27/3 Or 03—0]3—277/3 and with the
normalizing integrals A = [exp(—-\ and A}
=™ 5 exp(=N\g6]). We also chose \ —1/(24 372 and
)\0—2 5/(24\3T%)Y2 so that the width of the peak in (B4)
matched the width of the peak of the integrand. Finally, as a
generalization of the Bjerrum procedure, we used a radial
cutoff R=0.196 a/T" which satisfactorily located the mini-
mum of dK; ;/JR.

The results, which are well fitted by (3.13) with the coef-
ficients listed in Table I, agree closely with the consensus of
the seventh-order Padé approximants up to 7" =0.03; but
they deviate strongly above 7°=0.06: see Fig. 5.
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